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Abstract - -  A method of analysing finite strain from an initial random distribution of lines or planes is presented. 
The shape of the strain ellipsoid is mapped to the eigenvalue ratios of an orientation matrix. The method is used to 
interpret the andalusite fabrics from the aureole of the Ardara granite, County Donegal, Ireland. The high flattening 
strains determined in the aureole are accompanied by oblate strains in the granite margins and support the concept 
of deformation produced by expansion of the pluton. 

INTRODUCTION 

STRAIN in general produces a change in length (extension) 
and change in orientation (rotation) of linear elements 
within a material. Much use has been made of these 
extensions and rotations with respect to objects of specific 
initial shape in the analysis of finite strain in rocks 
(Ramsay 1967). 

Analysis of finite strain based on angular distributions 
of lines and planes has received little attention. Some 
progress has been made in relating deformed distributions 
of lines in two dimensions to strain ratios (Sanderson 
1977). However, despite the development of the theory of 
strained angular density distributions by March (1932) 
and Owens (1973), little practical application in three 
dimensions has been attempted. In this paper we will 
outline a simple method for specifying angular distri- 
butions and show how this can be used to analyse 
distributions resulting from the deformation of uniform 
initial distributions. 

DEFORMATION OF LINES AND PLANES 

Owens (1973), developing the work of March (1932), 
gives a comprehensive treatment of the modification of 
angular density distributions of lines and planes by 
homogeneous strain. His treatment will be followed in 
outline here. 

A line defined by a unit vector, v, is transformed under a 
strain, S (where S is the deformation gradient tensor, 
Malvern 1969), to a vector v', which is generally not a unit 
vector, by: 

v' = Sv. (1) 

Owens (1973) shows that the angular density, f ' ,  in a 
direction parallel to v' is related to the initial density, f ,  
parallel to v, by: 

f ,  = ),3/2 isl-, f (2) 

where IS I is the determinant of S and 2 is the quadratic 
elongation of the line. 

Similarly a pole to a plane, p, is transformed to p' by: 

p ' =  (S-1)rp (3) 

and: 

f '  = 2 '3/21S1f (4) 

where 2' is the reciprocal quadratic elongation. 
From these relationships the strain modified frequency 

distribution can be determined in terms of the initial 
distribution and the finite strain. In the general case the 
shape and orientation of the initial distribution and the 
deformation gradient tensor must be known relative to 
some reference frame. 

The situation simplifies considerably if the initial 
distribution is uniform because the angular frequency,f, is 
constant and S may be factored into a stretch tensor, U, 
and a rotation tensor, R. 

s = UR. (5) 

The operation of the rotation R on the uniform distri- 
bution leaves f unchanged. Thus equation (2) simplifies 
t o :  

f '  = C1 23/2. (6) 

Similarly, for planes, equation (4) simplifies to: 

f '  = C2 2 '3/2 (7) 

where IS I-a is included with the constants because this 
term, which specifies the volume change during defor- 
mation, cannot be analysed from angular frequency 
distributions (Owens 1973). 

Unbiased sampling of the strain modified uniform 
distribution allows the principal stretches to be calculated 
to a constant factor (C) and hence the strain ratios can be 
found. Since the strain modified uniform distribution was 
first studied by March (1932) we will term this 
distribution, in 3-dimensions, the March distribution. 

The March distribution for either lines or planes has an 
orthorhombic or higher symmetry consisting of a bipolar 
maximum or a planar girdle (great circle) or, more 
generally, both. This follows directly from equations (6) 
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and (7) since )~ and ).' have orthorhombic or higher 
symmetry. 

SPECIFICATION OF FABRIC DATA 

Orientation data obtained by sampling a density 
distribution may be plotted on an equal-area stereogram. 
The resulting fabric could then be compared with some 
distribution model, such as the March distribution, and 
an attempt made to estimate the parameters of the 
distribution (2~ >_ )-2 -> 23 for the March model). How is 
such an analysis best achieved? 

One approach would be to estimate the angular 
density,/", in a number of directions. This is usually done 
by contouring the fabric diagram and large quantities of 
data are necessary to achieve reliable estimates. 

The method of contouring will usually introduce bias 
errors in the estimation of the density at a point; all 
common contouring methods (e.g. Mellis, Schmidt etc.) 
introduce biased grouping errors. 

Ramsden & Cruden (1979) have discussed this problem 
with respect to correcting estimates of maximum density 
in axially symmetric clustered data using the Fisher 
distribution model. This work may be applied to some 
March distributions with axial symmetry. This approach, 
however, has not yet been extended to orthorhombic 
distributions although such a treatment based on the 
Bingham distribution model should be possible. 

Where data are numerous, direct estimation of strain 
from maximum, minimum and intermediate densities is 
possible. This method has been followed by Oertel (1970) 
and others to compare fabrics obtained from X-ray 
texture goniometry with the March model. 

A convenient way to specify orthorhombic distri- 
butions is by an orientation tensor developed by Bingham 
(1964), Scheidegger (1964), Fara & Scheidegger (1963) 
and Watson (1965). The orientation tensor, E, is formed 
by summation of the cross-products of unit vectors, v~, 
(l~, m~, n~) where I. m. and n are direction cosines 

E = l Ivlv0 
?l i =  n 

Y.m 2 Xmin  q . (8) 

L E l i n  i E m i n  i En~ _1 

If a direction is specified by v~ or its antipolar vector ~ 
( -  li, - mi, - nl) then 

Therefore E depends only on the direction and not the 
sense of direction of the unit vector and can be used to 
specify axial data uniquely. Conversely the use of E to 
represent true vectors destroys information. The eigen- 
values (E~, E2, E3) and eigenvectors (el, e2, e3) of E may 
be interpreted as measures of the shape and symmetry 
axes of the distribution provided it has orthorhombic or 
higher symmetry. For distributions with lower symmetry 

neither eigenvalues nor eigenvectors have a simple in- 
terpretation (cf. Woodcock 1977). 

Most of the use and interpretation of E has been for 
orthorhombic distributions displaying a simple com- 
bination of bipolar maxima and/or planar girdles (e.g. 
Bingham 1964, Scheidegger 1964, Woodcock 1977). A 
common misconception, although not attributable to the 
authors above, is that the orientation tensor specifies a 
distribution of unique shape. This is not true even if the 
orthorhombic distribution consists of simple bipolar 
maxima and/or girdles. For example, the March and 
Bingham distributions are two such distributions whose 
angular densities are different for distributions with the 
same orientation tensor, E, 

In order to relate distribution parameters (e.g. •j in the 
Bingham distribution or 2j in the March distribution) to 
the eigenvalues we must assume or, better still, establish a 
close correspondence between the angular densities for 
the sample and the distribution model. Many distri- 
butions have a unique correspondence between eigen- 
values of E and distribution parameters. This is the case 
for the Bingham distribution (see Bingham 1964 or 
Mardia 1972, pp, 254--256) and for the March distribution 
where Cobbold & Gapais {1979) have shown that: 

E~ )-1 x /~ (9) 
: + + etc. 

For such distributions the eigenvalues then specify a 
specific shape, 

NUMERICAL EVALUATION OF EIGENVALUES 
OF E FOR MARCH DISTRIBUTION 

The relationship between eigenvalues of E and the 
principal quadratic elongations which characterise the 
March distribution is indicated in equation (9). We wish 
to obtain estimates of ~ .  ,,z and -;,3 from the eigenvalues 
EL, E2 and E3, determined from actual data. A direct 
solution has not been found, instead we evaluate the 
relationship by a simple numerical simulation. 

A uniform square grid was placed at random over an 
equal-area stereogram 159 points were obtained at all 
grid intersections lying within the stereonet and lines 
corresponding to these intersections determined (Fig. 1). 
Unit vectors parallel to these lines were used to form the 
orientation tensor, E, and its eigenvalues and eigenvectors 
determined. These calculations were performed using a 
digital computer. For the initial distribution, E~ = Ez 
= E~ to within 0.5,1,,, thus the sample conformed closely 
to that from a uniform distribution. The initial distri- 
bution was then deformed by various irrotational strains, 
and the eigenvalues and eigenvectors of E calculated for 
the resulting distributions. The use of irrotational strain 
in the simulation was for computational convenience and 
the results obtained apply to any strain: see argument 
leading to equation (5). The strain ratios used as input 
were chosen to give a grid of strain ratios suitable for 
plotting on a logarithmic plot of El~E2 against Ez/E3 (Fig. 
2). Thus eigenvalues determined from data may be plotted 
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Fig. 1. Sample of 159 lines from uniform distribution used in numerical 
evaluation of eigenvalues for March distribution. Equal-area 

stereogram. 

on Fig. 2 and their corresponding strain ratios read from 
the diagram. A more precise strain estimate may be 
obtained by further simulation using strain values close to 
that of the initial estimate. In deriving Fig. 2 various initial 
samples (with n "-, 159) were obtained from the uniform 
distribution by repositioning the grid on the stereogram. 
The eigenvalues were fairly insensitive to the initial data if 
sampled in this way. Random sampling, however, pro- 
duces a much greater variability. Our objective was not a 
'Monte Carlo' simulation to evaluate confidence limits of 
the strain estimates, but merely a numerical evaluation of 
the relationship between these and the eigenvalues of E. 

The graph (Fig. 2) may be used for poles to planes if a 
and b are interchanged, thus, in Fig. 2 a = Y / Z  and b 
= X / Y  for planes. A more detailed and larger version of 
Fig. 2 is available from the authors. 

Cobbold & Gapais (1979) outline an alternative me- 
thod of numerical evaluation of the relationship between 
eigenvalues of E and strain ratios based on the calculation 
of angular densities in 576 elemental cones sampled from 
the March distribution. This method involves signi- 
ficantly greater computation. The simplicity of our tech- 
nique allows rapid calculation of many simulated strains 
and sufficient accuracy is obtained for the results to be 
used in the analysis of most fabric diagrams. 

Figure 2 also illustrates some important differences 
between strain plots and eigenvalue plots. Plane strain (a 
= b or K = 1) does not produce eigenvalues with EI/E 2 
= Ez/E3, as suggested by Woodcock (1977), a feature also 
noted by Cobbold and Gapais (1979). Woodcock (1977, 
p. 1235) states that "shape changes plot as straight lines for 
coaxial homogeneous strains". This is not generally true 
for either the 3-axis diagram (Owen 1973), to which 
Woodcock was specifically referring, or the orthogonal 
logarithmic plot (Fig. 2). Thus the charting of fabric 
changes during coaxial deformation is more complex than 
Woodcock suggests. 

A final point concerning the use of Fig. 2 should be 
emphasised. Sampling of a March distribution, even when 
one is certain the distribution holds, is subject to random 
variation, possibly approximated by a Fisher distribution 
(cf. Gaussian treatment of random errors of scalars). 
Much further work is necessary to establish confidence 
limits for strain estimates obtained from Fig. 2. Some 
progress on the testing of axial data has been made using 
the Bingham distribution (Bingham 1964, Mardia 1972, 
p. 275). Whilst the Bingham distribution is not identical to 
the March distribution it has some similarity in form and 
results obtained for it ma~y be applied approximately to 
March distributions. The problem of testing Bingham 
distributions is beyond the scope of this paper and the 
reader is referred to Mardia (1972) for details. 
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Fig. 2. Eigenvalue ratio plot EJE 2 against E2/E3 showing values obtained for different strain ratios (a and b). Results for sample 
localities A, B, C, and D from the Ardara aureole (see Fig. 3) are also plotted. 
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APPLICATION OF THE METHOD TO FIELD 
DATA: ANDALUSITES FROM A GRANITE 

AUREOLE 

Andalusite crystals up to 10cm long occur in the 
thermal aureole of the Ardara granite, Co Donegal, 
Ireland. The granite and its aureole have been described 
by Akaad (1956) and Pitcher & Berger (1972). These 
authors conclude that the pluton was intruded as a diapir 
which expanded by injection of granite into its centre. 
This expansion produced a strong fofiation in the outer 
margins of the pluton. Microstructural evidence shows 
that the thermal andalusites overprinted the regional 
schistosity (SR) which was then flattened around them. 
This flattening and the bending down of SR into con- 
cordance with the granite contact is considered to be due 
to the outward radial expansion of the growing pluton. 

The andalusites in the aureole develop a pronounced, 
steep planar fabric towards the contact. This fabric is 
interpreted as a consequence of the rotation of crystals 
during the deformation of the envelope of the expanding 
pluton. The andalusites invariably have a length : breadth 
ratio of greater than 5 and can therefore be assumed to 
rotate passively during deformation (Ghosh & Ramberg 
1976). 

The orientations of the long axes of andalusite crystals 
were measured from three localities near Clooney in the 
northern aureole of the granite (Fig. 3). Measurements 

were made in homogeneous unbanded semipelite con- 
taining the regional schistosity. The long axes of the 
andalusites were plotted on equal-area stereograms. The 
data form random orientations or planar girdles generally 
with axial symmetry. The orientation tensor E for each 
sample was calculated and its eigenvalues and eigenvec- 
tars found. The eigenvalue ratios were plotted on the 
orthogonal logarithmic graph (Fig. 2) and the cor- 
responding strain ratios determined. Table 1 summarises 
the data for the four samples. 

From Table 1 and Fig. 4 it can be seen that the degree of 
preferred orientation and hence the inferred strain ratios 
vary considerably. A test of uniformity (Mardia 1972, 
p. 276) was carried out on each sample. Sample A has a 
random orientation of andalusite long axes, whilst the 
others are non-random and tests of rotational symmetry 
(Mardia 1972, p. 277) show these form girdle distri- 
butions. Thus the three non-random samples have cor- 
responding strain ratios which plot in the flattening field 
K < 1 (Table 1). SR dips towards the granite contact and 
steepens as the strain increases towards the pluton (Table 
1), In a general sense the dip of SR acts as a strain marker 
and the progressive steepening has been mapped around 
the pluton (Fig. 3). 

Mimetic growth of andalusite parallel to the original 
schistosity or bedding could produce a non-uniform 
initial distribution. If this mimetic growth was syn- or 
post-tectonic then the degree of preferred orientation may 
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Fig. 3. The Ardara granite and a schematic section through its aureole. Ellipses record the strain related to the intrusion of the 
pluton. Ellipses within the granite are after Holder (1970). 

3km 



Fig. 5. Boudinaged andalusite crystals from locality E (see Fig. 3). 
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C. N 1~. N 

Fig. 4. Equal area stereograms of andalusite long axes, (3, • and • represent the maximum, minimum and intermediate 
eigenvalues respectively, is the pole to S R. Samples A, B, C, and D, the locations of which are shown in Fig. 3. 

be expected to increase with the intensification of SR 
towards the contact. However, in sample A the anda- 
lusites grew across a strong pre-existing regional schis- 
tosity producing a random orientation with no mimetic 
fabric. Elsewhere in the aureole small-scale compositional 
banding appears to produce a mimetic preferred orien- 
tation parallel to bedding, but where bands of homo- 
geneous pelite of greater than 100 mm thick occur, growth 
is random, as in sample A. 

Holder (1979) describes two distinct coaxial defor- 
mations in the aureole attributable to granite intrusion, 
each preceded by a period of andalusite growth. Growth 
during the later period would have been syntaxial on early 
formed and rotated crystals so that the final long axis 
orientations represent the rotations produced by the total 
strain. This would also hold for a continuous progressive 

deformation with successive increments of andalusite 
growing syntaxially on the rotating crystals. 

TWO-DIMENSIONAL ANALYSIS OF 
BOUDINAGED ANDALUSITES 

Good evidence for deformation of andalusites comes 
from Pollaleahy (locality E, Fig. 3) in the southwest of the 
aureole. Here, approx. 450 m from the contact, crystals lie 
subparallel to schistosity and bedding, which dip at 68 ° 
towards the contact. The high degree of preferred orien- 
tation is thought to be due to the strong sedimentary 
banding parallel to which the andalusites grew mimeti- 
cally. The crystals were boudinaged during brittle defor- 
mation, with no necking between the boudins which are 

Table 1. Field data eigenvalue ratios and strain estimates for four samples of andalusite fabrics from the Ardara 
granite aureole 

Distance 
No. of from Dip of 

andalusites pluton Ss towards 
Sample measured (metres) pluton Ex/E 2 E2/E3 X/Y Y/Z K 

A 32 500 63 ° 1.14 1.73 1.1 1.5 0.2 
B 42 500 63 ° 1.50 2.16 1.45 1.7 0.64 
C 29 150 71 ° 1.66 5.58 1.6 3.5 0.24 
D 32 150 85 ° 1.19 32.71 1.2 11.5 0.02 
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Holder has shown how expansion of a pluton with 
initial radius of about 2.5 km to its present radius of 
4-5 km will produce the observed strain in the xenoliths 
with X/Z "-~ 5. The initial diapir may also produce 
deformation of the aureole which will not be recorded by 
the xenoliths. The higher strain on the aureole side of the 
contact could thus reflect the combined strains during the 
development of the initial diapir and its subsequent 
expansion. 

Fig. 6. Pitch and extension of 67 boudinaged andalusites, from locality E 
(Fig. 3), on schistosity (parallel to bedding). A-B is strike of schistosity. 

separated by quartz fibres parallel to the crystal length 
(Fig. 5). 

The pitch and extension of 67 andalusites were mea- 
sured (Fig. 6) and a best fit ellipse to the data found using 
the least squares method of Hext (1963). The resulting 
ellipse has X = 1.1486, Y= 1.1254, that is a ratio of 1.02 
which is not significantly different from unity at 95 % level 
of confidence. Thus the increment of the strain ellipsoid 
calculated from brittle deformation is oblate (K - 0) with 
Z < Y-~ X -~ 1.137. 

The strain calculated from the extension of the anda- 
lusites is a minimum estimate but it supports a flattening 
deformation in the aureole as deduced from the 3-D 
andalusite fabrics. 

DISCUSSION: IMPLICATIONS OF STRAIN 
RESULTS TO THE GRANITE INTRUSION 

MODEL 

Pitcher & Berger (1972) suggest that the granite 
intruded as a diapir which then increased in size by radial 
extension as an 'expanding balloon'. Equal extension in 
all directions parallel to the surface of the inflating pluton 
would produce pure flattening strain. The strain results in 
this paper, from both the 2-D and 3-D analyses, support 
flattening parallel to the granite contact as predicted by 
this model. The 3-D analysis also shows that the strain 
increases towards the contact. 

Holder (1979) has developed the 'expanding balloon' 
model using oblate strains (K = 0) measured from 
xenoliths in the granite. The unfoliated centre of the 
pluton has undeformed xenoliths with the strain increas- 
ing with increasing foliation towards the margins, the 
highest strains having X/Z ratios -,~ 5. Our results show 
that the highest strain recorded by the andalusites in the 
aureole have X/Z > 11. 
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Note added in proof 
An alternative formulation of the relationship shown in Fig. 2 is given 

by Harvey & Laxton (1980). The estimation of finite strain from the 
orientation distribution of passively deformed linear markers: eigen- 
value relationships. " 


